Population-Based Continuous Optimization, Probabilistic Modelling and Mean Shift
نویسندگان
چکیده
منابع مشابه
Population-Based Continuous Optimization, Probabilistic Modelling and Mean Shift
Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler ...
متن کاملMean Shift Segmentation - Evaluation of Optimization Techniques
The mean shift algorithm is a powerful clustering technique, which is based on an iterative scheme to detect modes in a probability density function. It has been utilized for image segmentation by seeking the modes in a feature space composed of spatial and color information. Although the modes of the feature space can be efficiently calculated in that scheme, different optimization techniques ...
متن کاملHierarchical and multiscale Mean Shift segmentation of population grids
The Mean Shift (MS) algorithm allows to identify clusters that are catchment areas of modes of a probability density function (pdf). We propose to use a multiscale and hierarchical implementation of the algorithm to process grid data of population and identify automatically urban centers and their dependant sub-centers through scales. The multiscale structure is obtained by increasing iterative...
متن کاملPopulation Size Extrapolation in Relational Probabilistic Modelling
When building probabilistic relational models it is often difficult to determine what formulae or factors to include in a model. Different models make quite different predictions about how probabilities are affected by population size. We show some general patterns that hold in some classes of models for all numerical parametrizations. Given a data set, it is often easy to plot the dependence o...
متن کاملSpeaker Change Detection based on Mean Shift
To settle out the problem that search of speaker change point (SCP) is blind and exhaustive, mean shift is proposed to seek SCP by estimating the kernel density of speech stream in this paper. It contains three steps: seeking peak points using mean shift firstly, using maximum likelihood ratio (MLR) to compute the MLR value of the peak points secondly, and seeking SCPs from MLR value using the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Evolutionary Computation
سال: 2005
ISSN: 1063-6560,1530-9304
DOI: 10.1162/1063656053583478